Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein
- PMID: 9154982
- DOI: 10.1023/a:1005814800641
Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein
Abstract
Transfer of Chlamydomonas reinhardtii cells grown photoautotrophically in low light to higher light intensities has a dramatic transient effect on the differential expression of the two major chloroplast encoded photosynthetic proteins. Synthesis of the D1 protein of Photosystem II increases more than 10-fold during the first six hours in high light (HL), whereas synthesis of the large subunit (LSU) of Rubisco drops dramatically within 15 min and only gradually resumes at about 6 h. Synthesis of the chloroplast-encoded ATP synthase beta subunit, the nuclear-encoded Rubisco small subunit and the nuclear-encoded beta-tubulin is not noticeably affected. Up regulation of psbA mRNA translation accounts for a substantial fraction of the increased D1 synthesis, since accumulation of psbA mRNA increases 4.2- and 6.3-fold less than D1 synthesis at 6 and 18 h in HL. Down-regulation of LSU synthesis is not correlated with a reduction in the steady-state level of the rbcL transcript. Primer extension mapping of the 5' ends of the rbcL mRNAs reveals transcripts with start points located at -93 and -168 relative to the first translated ATG. Transfer of low light (LL)-grown cells to HL temporarily decreases the ratio of the -93 to -168 transcripts, but this ratio normalizes after 6 h in HL, coincident with the recovery in the synthesis of LSU. These several distinct effects of temporary light stress were correlated with a rapid, sustained increase in the reduction state of QA, a transient decline in photosynthetic efficiency, a less rapid drop in total chlorophyll content and a delay in cell division.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources