Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May 30;272(22):14045-50.
doi: 10.1074/jbc.272.22.14045.

Critical role of human bisphosphoglycerate mutase Cys22 in the phosphatase activator-binding site

Affiliations

Critical role of human bisphosphoglycerate mutase Cys22 in the phosphatase activator-binding site

P Ravel et al. J Biol Chem. .

Abstract

The enzymatic activities catalyzed by bisphosphoglycerate mutase (BPGM, EC 5.4.2.4) have been shown to occur at a unique active site, with distinct binding sites for diphosphoglycerates and monophosphoglycerates. The physiological phosphatase activator (2-phosphoglycolate) binds to BPGM at an undetermined site. BPGM variants were constructed by site-directed mutagenesis of three amino acid residues in the active site to identify residues specifically involved in the binding of the monophosphoglycerates and 2-phosphoglycolate. Substitution of Cys22 by functionally conservative residues, Thr or Ser, caused a great decrease in 2-phosphoglycolate-stimulated phosphatase activity and in the Ka value of the activator, whereas it caused no change in other catalytic activities or in the Km values of 2,3-diphosphoglycerate (2,3-DPG) and glycerate 3-phosphate (3-PG, EC 1.1.1.12), indicating that Cys22 is specifically involved either directly or indirectly in 2-phosphoglycolate binding. Kinetic experiments showed that the Ka of the cofactor and the Km of 3-PG were affected by the substitution of Ser23 indicating that this residue is necessary for the fixation of both 3-PG and 2-phosphoglycolate. The R89K variant has previously been shown to have a modified Km value for monophosphoglycerates, however, its affinity for 2-phosphoglycolate is unaltered, suggesting that Arg89 is specifically involved in monophosphoglycerates binding. CD spectroscopic studies of substrates and cofactor binding showed that 2,3-DPG induced structural modifications of normal and mutated enzymes which could be due to protein phosphorylation. Addition of 2-phosphoglycolate to phosphorylated proteins with normal affinity for the cofactor produced spectra with the same characteristics as unphosphorylated species. In summary, monophosphoglycerates and 2-phosphoglycolate have partially distinct binding sites in human BPGM. The specific implication of the Cys22 residue in 2-phosphoglycolate binding is of great significance in the design of analogs of therapeutic benefit.

PubMed Disclaimer

Publication types