Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Apr;121(4):717-23.
doi: 10.1093/oxfordjournals.jbchem.a021645.

Comparison of the gene expression of aspartate beta-D-semialdehyde dehydrogenase at elevated hydrostatic pressure in deep-sea bacteria

Affiliations
Free article
Comparative Study

Comparison of the gene expression of aspartate beta-D-semialdehyde dehydrogenase at elevated hydrostatic pressure in deep-sea bacteria

C Kato et al. J Biochem. 1997 Apr.
Free article

Abstract

Aspartate beta-D-semialdehyde dehydrogenase genes (asd) were cloned and sequenced from a deep-sea-adapted strictly barophilic bacterium, Shewanella sp. strain DB6705, and a moderately barophilic bacterium, Shewanella sp. strain DSS12. The determined asd sequences of these two strains were very similar, and the identity of the deduced amino acids sequences was 96.2%. The 5'-ends of the asd mRNA from both strains were localized at corresponding sites by primer extension analysis, and two transcriptional starting points, which differed by only 1 base, were detected. In strain DB6705, a pressure-regulated transcript was mainly observed, whereas in strain DSS12, a pressure-tolerant transcript was observed together with the pressure-regulated transcript. Western-blotting analysis showed that the ASD protein was expressed under higher pressure conditions in DB6705, and under all pressure conditions tested in DSS12, as reflected in the primer extension results. Our findings suggest that asd expression controlled by pressure is one of the important mechanisms involved in the adaptation of microorganisms to the deep-sea environment.

PubMed Disclaimer

Publication types

MeSH terms

Associated data