Chlorine gas induced acute lung injury in isolated rabbit lung
- PMID: 9163653
- DOI: 10.1183/09031936.97.10051100
Chlorine gas induced acute lung injury in isolated rabbit lung
Abstract
This study was designed to investigate the pathogenesis of chlorine gas (Cl2) induced acute lung injury and oedema. Isolated blood-perfused rabbit lungs were ventilated either with air (n=7) or air plus 500 parts per million (ppm) of Cl2 (n=7) for 10 min. Capillary pressure, measured by analysing the pressure/time transients of pulmonary arterial, venous and double (both arterial and venous) occlusions, was unchanged in both groups. In Cl2-exposed lungs, the fluid filtration rate increased from -0.228+/-0.25 to 1.823+/-1.23 mL min(-1) x 100 g(-1) (p<0.001) and the filtration coefficient increased from 0.091+/-0.01 to 0.259+/-0.07 mL x min(-1) x cmH2O(-1) x 100 g(-1) (p<0.001). No changes were observed in the control lungs. The extravascular lung water/blood-free dry weight ratio was 8.6+/-1.6 in the Cl2 group and 4.0+/-0.5 in the control group (p<0.001), confirming that the increase in lung weight was related to accumulation of extravascular fluid. Although the alveolar flooding by oedema is explained, in part, by the Cl2-induced epithelial injury, our results suggest that Cl2 exposure induces acute lung injury and oedema due to an increased microvascular permeability.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous