Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;124(9):1781-7.
doi: 10.1242/dev.124.9.1781.

Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction

Affiliations

Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction

R Heidstra et al. Development. 1997 May.

Abstract

Nod factors secreted by Rhizobium leguminosarum bv. viciae induce root hair deformation, involving a reinitiation of tip growth, and the formation of nodule primordia in Vicia sativa (vetch). Ethylene is a potent inhibitor of cortical cell division, an effect that can be counteracted by applying silver ions (Ag+) or aminoethoxy-vinylglycine (AVG). In contrast to the inhibitory effect on cortical cell division, ethylene promotes the formation of root hairs (which involves tip growth) in the root epidermis of Arabidopsis. We investigate the possible paradox concerning the action of ethylene, putatively promoting Nod factor induced tip growth whilst, at the same time, inhibiting cortical cell division. We show, by using the ethylene inhibitors AVG and Ag+, that ethylene has no role in the reinitiation of root hair tip growth induced by Nod factors (root hair deformation) in vetch. However, root hair formation is controlled, at least in part, by ethylene. Furthermore, we show that ACC oxidase, which catalizes the last step in ethylene biosynthesis, is expressed in the cell layers opposite the phloem in that part of the root where nodule primordia are induced upon inoculation with Rhizobium. Therefore, we test whether endogenously produced ethylene provides positional information controlling the site where nodule primordia are formed by determining the position of nodules formed on pea roots grown in the presence of AVG or Ag+.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources