Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun;30(6):603-13.
doi: 10.1016/s0021-9290(96)00189-3.

Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations

Affiliations

Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations

C R Jacobs et al. J Biomech. 1997 Jun.

Abstract

Over 100 years ago, Wolff hypothesized that cancellous bone altered both its apparent density and trabecular orientation in response to mechanical loads. A mathematical counterpart of this principle is derived by adding a remodeling rule for the rate-of-change of the full anisotropic stiffness tensor (all 21 independent terms) to the density rate-of-change rule adapted from an existing isotropic theory. As a result, anisotropy and density patterns develop such that the local stiffness tensor is optimal for the given series of applied loadings. The method does not rely on additional morphological measures of trabecular orientation. Furthermore, assumptions of material symmetry are not required, and any observed regions of orthotropy, transverse isotropy, or isotropy are a result entirely of the functional adaptation of the bone and not the consequence of a modeling assumption. This approach has been implemented with the finite element method and applied to a two-dimensional model of the proximal femur with encouraging results.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources