Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Jun;72(6):2430-44.
doi: 10.1016/S0006-3495(97)78888-X.

Analytical calculation of intracellular calcium wave characteristics

Affiliations
Comparative Study

Analytical calculation of intracellular calcium wave characteristics

R Kupferman et al. Biophys J. 1997 Jun.

Abstract

We present a theoretical analysis of intracellular calcium waves propagated by calcium feedback at the inositol 1,4,5-trisphosphate (IP3) receptor. The model includes essential features of calcium excitability, but is still analytically tractable. Formulas are derived for the wave speed, amplitude, and width. The calculations take into account cytoplasmic Ca buffering, the punctate nature of the Ca release channels, channel inactivation, and Ca pumping. For relatively fast buffers, the wave speed is well approximated by V(infinity) = (J(eff)D(eff)/C0)1/2, where J(eff) is an effective, buffered source strength; D(eff) is the effective, buffered diffusion constant of Ca; and C(0) is the Ca threshold for channel activation. It is found that the saturability and finite on-rate of buffers must be taken into account to accurately derive the wave speed and front width. The time scale governing Ca wave propagation is T(r), the time for Ca release to reach threshold to activate further release. Because IP3 receptor inactivation is slow on this time scale, channel inactivation does not affect the wave speed. However, inactivation competes with Ca removal to limit wave height and front length, and for biological parameter ranges, it is inactivation that determines these parameters. Channel discreteness introduces only small corrections to wave speed relative to a model in which Ca is released uniformly from the surface of the stores. These calculations successfully predict experimental results from basic channel and cell parameters and explain the slowing of waves by exogenous buffers.

PubMed Disclaimer

References

    1. Biophys J. 1994 Dec;67(6):2191-204 - PubMed
    1. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895-9 - PubMed
    1. J Gen Physiol. 1995 Jan;105(1):149-71 - PubMed
    1. FASEB J. 1995 Nov;9(14):1463-72 - PubMed
    1. Biophys J. 1995 Nov;69(5):1683-97 - PubMed

Publication types

MeSH terms

LinkOut - more resources