Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun;16(2):188-90.
doi: 10.1038/ng0697-188.

Mutations in the myosin VIIA gene cause non-syndromic recessive deafness

Affiliations

Mutations in the myosin VIIA gene cause non-syndromic recessive deafness

X Z Liu et al. Nat Genet. 1997 Jun.

Abstract

Genetic hearing impairment affects around 1 in every 2,000 births. The bulk (approximately 70%) of genetic deafness is non-syndromic, in which hearing impairment is not associated with any other abnormalities. Over 25 loci involved in non-syndromic deafness have been mapped and mutations in connexin 26 have been identified as a cause of non-sydromic deafness. One locus for non-syndromic recessive deafness, DFNB2 (ref. 4), has been localized to the same chromosomal region, 11q14, as one of the loci, USH1B, underlying the recessive deaf-blind syndrome. Usher syndrome type 1b, which is characterized by profound congenital sensorineural deafness, constant vestibular dysfunction and prepubertal onset of retinitis pigmentosa. Recently, it has been shown that a gene encoding an unconventional myosin, myosin VIIA, underlies the mouse recessive deafness mutation, shaker-1 (ref. 5) as well as Usher syndrome type 1b. Mice with shaker-1 demonstrate typical neuroepithelial defects manifested by hearing loss and vestibular dysfunction but no retinal pathology. Differences in retinal patterns of expression may account for the variance in phenotype between shaker-1 mice and Usher type 1 syndrome. Nevertheless, the expression of MYO7A in the neuroepithelium suggests that it should be considered a candidate for non-syndromic deafness in the human population. By screening families with non-syndromic deafness from China, we have identified two families carrying MYO7A mutations.

PubMed Disclaimer

Publication types