Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun;18(3):353-67.
doi: 10.1023/a:1018678227138.

L-type calcium current activation in cultured human myotubes

Affiliations

L-type calcium current activation in cultured human myotubes

I Sipos et al. J Muscle Res Cell Motil. 1997 Jun.

Abstract

The time course of activation of the skeletal muscle L-type calcium channel was studied in voltage-clamped myotubes derived from human satellite cells. The slow L-type current was isolated by inactivating faster calcium current components using appropriate prepulses or by subtracting the currents not blocked by 5 microM nifedipine. The L-type current exhibited a single exponential activation and time constants which showed little voltage dependence in the range +10 to +50mV. Currents blocked by nifedipine could be partially restored by UV-light flash photolysis. When a flash of light was applied during a depolarizing step, the activation time course of the resulting inward current contained a rapid, almost instantaneous component followed by a slower component. The amplitude of the rapid component was different when the flash was applied at different times during the depolarizing step: depolarization first increased and then decreased the fraction of channels which could rapidly be restored from the block by photolysis. Plotted versus time after the onset of the depolarization this fraction closely matched the time course of the L-type current obtained before the block by nifedipine. This indicates that the slow gating recations of the Ca2+ channel remain functional in the nifedipine-blocked state. Large conditioning depolarizations which had been shown to enhance the speed of L-type current activation in frog muscle fibres showed no effect in human myotubes. Numerical simulations using a gating scheme proposed for frog muscle demonstrate that such differences can be caused by changing just a single kinetic parameter.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Gen Physiol. 1985 Sep;86(3):353-79 - PubMed
    1. Biochim Biophys Acta. 1993 Jan 18;1145(1):8-14 - PubMed
    1. J Physiol. 1996 Jul 1;494 ( Pt 1):121-40 - PubMed
    1. Trends Neurosci. 1996 Jan;19(1):35-43 - PubMed

Publication types

LinkOut - more resources