Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;3(1):64-71.
doi: 10.1006/nbdi.1996.0006.

Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury

Affiliations

Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury

D M Ferriero et al. Neurobiol Dis. 1996 Feb.

Abstract

We hypothesized that elimination of neuronal nitric oxide synthase (nNOS) by targeted disruption of the nNOS gene would result in amelioration of damage seen after hypoxia-ischemia in the developing brain since nitric oxide (NO) has been implicated in glutamate-mediated neurotoxicity after ischemia. Both wildtype and nNOS-deficient pups were subjected to focal ischemia followed by 1.5 h of hypoxia at Postnatal Day 7. Seven days later, brains of surviving animals were analyzed for damage. The nNOS-deficient pups (n = 17) had less histopathologic evidence of injury in both the hippocampus (P = 0.008) and the cortex (P = 0.0008) than the wildtype (n = 30) mice. When injured, the nNOS-deficient mice had damage that was limited to the hippocampus. These results support a role for neuronally produced NO in injury after perinatal hypoxia-ischemia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources