Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;272(5 Pt 1):C1734-8.
doi: 10.1152/ajpcell.1997.272.5.C1734.

Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle

Affiliations

Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle

S Kristiansen et al. Am J Physiol. 1997 May.

Abstract

We have recently shown that eccentric contractions (ECs; forced lengthening of active muscle) elicit a delayed decrease in glucose transporter (GLUT-4) protein content in rat skeletal muscle and a decrease in subsequent contraction-stimulated glucose transport. Here, we investigate whether this decrease in total GLUT-4 protein after prior ECs is due to changes in GLUT-4 gene transcription rate and GLUT-4 mRNA level. Furthermore, the effect of prior ECs on sarcolemmal GLUT-4 protein content in plasma membrane (PM) vesicles isolated from contraction-stimulated muscle was determined. Rat gastrocnemius muscle was electrically stimulated for ECs, and the contralateral muscle served, as unstimulated control (UC). Two days later, the total GLUT-4 protein content was decreased by 50% (P < 0.05) and 32% (P < 0.05) in the white and red gastrocnemius muscle, respectively. Furthermore, the GLUT-4 mRNA concentration was decreased by 41% (P < 0.05) in both the white and red gastrocnemius muscle. Moreover, the GLUT-4 transcription rate, determined by nuclear run-on analysis, was decreased by 75% (P < 0.05) in mixed EC gastrocnemius muscle compared with UC muscle. PM vesicles were isolated from EC and UC muscle after 15 min of isometric contractions. The PM GLUT-4 protein content was reduced by 51% (P < 0.05) in EC muscle compared with UC muscle. In conclusion, 2 days after ECs, the GLUT-4 transcription rate, GLUT-4 mRNA, and GLUT-4 protein content were decreased in rat skeletal muscle. Moreover, the PM GLUT-4 protein content in contraction-stimulated muscle was decreased. We suggest that eccentric muscle contractions decrease muscle GLUT-4 transcription rate, resulting in a lower GLUT-4 protein content, which in turn decreases the number of GLUT-4 transporters translocated to the sarcolemma, ultimately leading to decreased contraction-induced muscle glucose transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources