Placental transport of threonine and its utilization in the normal and growth-restricted fetus
- PMID: 9176191
- DOI: 10.1152/ajpendo.1997.272.5.E892
Placental transport of threonine and its utilization in the normal and growth-restricted fetus
Abstract
Placental transport and fetoplacental utilization of threonine (Thr) were compared at 130 +/- 1 days gestational age between seven control ewes (C) and six ewes in which intrauterine growth restriction (IUGR) had been induced by exposure to high ambient temperature from 33 +/- 1 to 112 +/- 2 days of gestation. The fluxes were measured using simultaneous intravenous infusions of L-[1-13C]Thr into the mother and L-[U-14C]Thr into the fetus. The IUGR group had less fetal weight (1.27 +/- 0.14 vs. 3.10 +/- 0.10 kg, P < 0.01) and placental weight (120 +/- 17 vs. 295 +/- 14 g, P < 0.01) than the C group. The direct flux of maternal Thr into the fetal systemic circulation was less in the IUGR fetuses, both relative to fetal weight (1.40 +/- 0.19 vs. 2.19 +/- 0.18 mumol.min-1.kg fetus-1, P = 0.0107) and placental weight (1.5 +/- 0.2 vs. 2.3 +/- 0.2 mumol.min-1.100 g placenta-1, P = 0.0187). In both groups, there was excretion of CO2 produced from fetal Thr. The rate of CO2 production from fetal plasma Thr carbon by fetus plus placenta was reduced in the IUGR group (1.50 +/- 0.23 vs. 2.86 +/- 0.32 mumol.min-1.kg fetus-1, P = 0.0065). We conclude that the flux of maternal Thr into the IUGR fetus is markedly reduced because of a reduction in placental mass and because of a weight-specific reduction in Thr placental transport. The reduced flux is routed into fetal Thr accretion via a decrease in fetal Thr oxidation.
Similar articles
-
Placental transport and fetal utilization of leucine in a model of fetal growth retardation.Am J Physiol. 1996 Mar;270(3 Pt 1):E491-503. doi: 10.1152/ajpendo.1996.270.3.E491. Am J Physiol. 1996. PMID: 8638698
-
The tissue and plasma concentration of polyols and sugars in sheep intrauterine growth retardation.Exp Biol Med (Maywood). 2010 Aug;235(8):999-1006. doi: 10.1258/ebm.2010.009360. Epub 2010 Jun 24. Exp Biol Med (Maywood). 2010. PMID: 20576742
-
Ovine fetal placental lactate exchange and decarboxylation at midgestation.Am J Physiol. 1993 Feb;264(2 Pt 1):E221-5. doi: 10.1152/ajpendo.1993.264.2.E221. Am J Physiol. 1993. PMID: 8447388
-
Fetoplacental transport and utilization of amino acids in IUGR--a review.Placenta. 2005 Apr;26 Suppl A:S52-62. doi: 10.1016/j.placenta.2005.01.003. Placenta. 2005. PMID: 15837069 Review.
-
Intrauterine growth restriction: implications for placental metabolism and transport. A review.Placenta. 2009 Mar;30 Suppl A:S77-82. doi: 10.1016/j.placenta.2008.12.006. Epub 2009 Jan 13. Placenta. 2009. PMID: 19144403 Review.
Cited by
-
Reduced Na+ K+ -ATPase activity may reduce amino acid uptake in intrauterine growth restricted fetal sheep muscle despite unchanged ex vivo amino acid transporter activity.J Physiol. 2020 Apr;598(8):1625-1639. doi: 10.1113/JP278933. Epub 2020 Feb 3. J Physiol. 2020. PMID: 31909825 Free PMC article.
-
In vivo investigation of ruminant placenta function and physiology-a review.J Anim Sci. 2022 Jun 1;100(6):skac045. doi: 10.1093/jas/skac045. J Anim Sci. 2022. PMID: 35648127 Free PMC article. Review.
-
Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth.J Physiol. 2017 Aug 1;595(15):5057-5093. doi: 10.1113/JP273330. Epub 2017 May 23. J Physiol. 2017. PMID: 28337745 Free PMC article. Review.
-
Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses.Front Endocrinol (Lausanne). 2021 May 17;12:612888. doi: 10.3389/fendo.2021.612888. eCollection 2021. Front Endocrinol (Lausanne). 2021. PMID: 34079518 Free PMC article. Review.
-
Placental adaptations in growth restriction.Nutrients. 2015 Jan 8;7(1):360-89. doi: 10.3390/nu7010360. Nutrients. 2015. PMID: 25580812 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous