Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;272(5 Pt 2):H2425-35.
doi: 10.1152/ajpheart.1997.272.5.H2425.

Cardiac myocyte volume, Ca2+ fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy

Affiliations

Cardiac myocyte volume, Ca2+ fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy

L M Delbridge et al. Am J Physiol. 1997 May.

Abstract

Alterations in cellular Ca2+ transport and excitation-contraction coupling may contribute to dysfunction in cardiac hypertrophy. Left ventricular myocytes were isolated from rat hearts after 15-18 wk of suprarenal abdominal aortic banding to evaluate the hypothesis that hypertrophy alters the relationship between Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ load during steady-state voltage-clamp depolarization. Mean arterial pressure (MAP) and heart weight-to-body weight ratio of banded (B) animals were significantly higher than in control or sham-operated animals (C). Isolated myocyte dimensions and volume increased in parallel with whole heart hypertrophy and elevation in MAP. However, the relationship between membrane surface area (measured by capacitance) and cell volume (measured by laser scanning confocal microscopy) was unaltered (C: 8.9 +/- 0.3; B: 8.5 +/- 0.4 pF/pl). No differences in the voltage dependence of ICa activation, steady-state inactivation, or recovery from inactivation were detected between C and B myocytes. Maximal ICa density for the two groups was also not different either under basal conditions (C: 4.28 +/- 0.98; B: 4.57 +/- 0.60 pA/pF) or in the presence of 1 microM isoproterenol (C: 16.6 +/- 2.3; B: 16.5 +/- 2.3 pA/pF). The fraction of Ca2+ released from the SR by a single twitch was 55.4 +/- 9.4% in C and 37.1 +/- 6.9% in B (not significantly different). Steady-state Ca2+ influx during a twitch was calculated in units of micromoles per liter of nonmitochondrial volume from the integral of ICa (C: 13.4 +/- 0.7 microM; B: 13.3 +/- 0.8 microM). The SR Ca2+ load was similarly calculated by integration of Na+/Ca2+ exchange current induced by rapid caffeine application (C: 140 +/- 9 microM; B: 169 +/- 18 microM). We conclude that significant cellular hypertrophy is associated with proportional increases in sarcolemmal ICa influx, SR Ca2+ loading, and the amount of SR Ca2+ released in this model of pressure overload.

PubMed Disclaimer

Publication types

LinkOut - more resources