Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;272(5 Pt 2):H2507-11.
doi: 10.1152/ajpheart.1997.272.5.H2507.

Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells

Affiliations

Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells

C Katnik et al. Am J Physiol. 1997 May.

Abstract

ATP-sensitive potassium (KATP) channels represent a class of K+ channel regulated by intracellular ATP and serve to transduce changes in cell metabolism into changes in membrane potential. The presence of an KATP conductance has recently been demonstrated in freshly dissociated endothelial cells from rabbit arteries. In the present study, the single-channel activity underlying the KATP conductance in rabbit aortic endothelial cells was examined. Unitary currents were evoked in response to lowering intracellular ATP concentration or application of the K(+)-channel activator levcromakalim and were inhibited by the sulfonylurea drug glibenclamide. Exposure of the cytoplasmic face of an inside-out membrane patch to a solution containing 0.1 mM ATP produced single-channel events with unitary conductances of approximately 150 and approximately 25 pS that were inhibited by either 6 mM ATP or 10 microM glibenclamide. A small conductance channel was also activated in cell-attached patches by bath-applied levcromakalim (25 microM). Activation of endothelial cell KATP channels, and subsequent membrane hyperpolarization, may contribute to endothelium-dependent regulation of vascular smooth muscle tone in response to changes in levels of intracellular metabolites.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources