Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 May;272(5 Pt 2):F561-78.
doi: 10.1152/ajprenal.1997.272.5.F561.

Biosynthesis and homeostatic roles of nitric oxide in the normal kidney

Affiliations
Review

Biosynthesis and homeostatic roles of nitric oxide in the normal kidney

B C Kone et al. Am J Physiol. 1997 May.

Abstract

Nitric oxide (NO) is an important molecular mediator of numerous physiological processes in virtually every organ. In the kidney, NO plays prominent roles in the homeostatic regulation of glomerular, vascular, and tubular function. Differential expression and regulation of the NO synthase (NOS) gene family contribute to this diversity of action. This review explores recent advances in the molecular and cell biology of the NOS isoforms and relates these findings to functions of NO in the control of normal renal hemodynamics, the glomerular microcirculation, and renal salt excretion. Newly recognized molecular diversity of the NOS gene products, factors governing NOS isozyme gene expression and catalytic activity, and the intrarenal distribution of the NOS isoforms are examined. Physiological data regarding the complex roles of NO in the control of renal hemodynamics and the glomerular microcirculation are analyzed, and the effects of chronic NOS inhibition on glomerular function and structure are presented. The contributions of NO to renal salt excretion as well as functional and molecular biological evidence for adaptive changes in NOS isoform expression during variations in dietary salt balance are discussed. Current investigative challenges and goals for future research of renal NO biology are presented.

PubMed Disclaimer

Publication types

LinkOut - more resources