Selective stimulation of colour mechanisms: an empirical perspective
- PMID: 9176947
- DOI: 10.1163/156856897x00302
Selective stimulation of colour mechanisms: an empirical perspective
Abstract
Anatomically distinct parvo and magno visual pathways show considerable functional overlap. However, specific stimulation of the most sensitive colour-opponent parvo-neurones is still possible, provided that colour stimuli are verified for selectivity. The authors have shown that gratings of low contrast, low spatial frequency and of restricted spatial content (6 or less spatial cycles) are optimal stimuli for distinguishing between colour-related (tritan and red/green) from achromatic or partly chromatic responses. This is particularly important when recording global responses, such as visual evoked potentials, VEPs. The crucial point is that at low presentation rates (< 2 Hz), colour-related onset VEPs are maximally different from contrast reversal VEPs, thereby reflecting the activity of sustained-type parvo mechanisms. Achromatic onset, offset and reversal VEPs are similar, reflecting mediation by transient-type magno mechanisms. A stringent test of colour-response specificity is to check whether the chromatic reversal VEP has a low-pass temporal tuning curve, since it becomes band-pass when substantial achromatic intrusions are present. Specification of chromatic isoluminant stimuli, e.g. along cardinal axes, does not guarantee their colour-selectivity, if chromatic aberration and variable macular pigmentation changes the chromatic content of the retinal image. It is shown here how chromatic stimuli, namely (1) red/green and (2) purple/green (tritanopic) gratings, can be optimized for selective stimulation of the colour system.
Similar articles
-
Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.Vis Neurosci. 2012 Nov;29(6):301-13. doi: 10.1017/S0952523812000351. Vis Neurosci. 2012. PMID: 23206417
-
Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.Vis Neurosci. 2008 May-Jun;25(3):317-25. doi: 10.1017/S0952523808080243. Epub 2008 Mar 6. Vis Neurosci. 2008. PMID: 18321403
-
Pattern ERGs from isoluminant gratings; poor selectivity compared with VEPS.Ophthalmic Physiol Opt. 1997 Nov;17(6):499-508. Ophthalmic Physiol Opt. 1997. PMID: 9666924
-
Chromatic visual evoked potentials: A review of physiology, methods and clinical applications.Prog Retin Eye Res. 2024 Jul;101:101272. doi: 10.1016/j.preteyeres.2024.101272. Epub 2024 May 16. Prog Retin Eye Res. 2024. PMID: 38761874 Review.
-
Calibrating screens for continuous colour displays.Spat Vis. 1997;11(1):57-74. doi: 10.1163/156856897x00069. Spat Vis. 1997. PMID: 9304753 Review.
Cited by
-
EEG alpha rhythms and transient chromatic and achromatic pattern visual evoked potentials in children and adults.Doc Ophthalmol. 2011 Apr;122(2):99-113. doi: 10.1007/s10633-011-9264-3. Epub 2011 Mar 3. Doc Ophthalmol. 2011. PMID: 21369862
-
Motion adaptation in chromatic motion-onset visual evoked potentials.Doc Ophthalmol. 2001 Nov;103(3):229-51. doi: 10.1023/a:1013037101814. Doc Ophthalmol. 2001. PMID: 11824660
-
The selectivity of task-dependent attention varies with surrounding context.J Neurosci. 2012 Aug 29;32(35):12180-91. doi: 10.1523/JNEUROSCI.5992-11.2012. J Neurosci. 2012. PMID: 22933800 Free PMC article. Clinical Trial.
-
Scalp VEPs and intra-cortical responses to chromatic and achromatic stimuli in primates.Doc Ophthalmol. 2002 Sep;105(2):243-79. doi: 10.1023/a:1020557105243. Doc Ophthalmol. 2002. PMID: 12462446