Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May 15;42(1):161-4.
doi: 10.1006/geno.1997.4711.

Genomic structure and expression of the human heme A:farnesyltransferase (COX10) gene

Affiliations

Genomic structure and expression of the human heme A:farnesyltransferase (COX10) gene

T Murakami et al. Genomics. .

Abstract

Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a 1.5-Mb tandem DNA duplication in chromosome 17p11.2-p12, while hereditary neuropathy with liability to pressure palsies (HNPP) is associated with a 1.5-Mb deletion at this locus. The 1.5-Mb CMT1A monomer unit duplicated in CMT1A and deleted in HNPP is flanked by two 24-kb direct repeats termed the CMT1A-REPs. Recently, sequence analysis of the CMT1A-REPs revealed that they contain an internal exon of the COX10 gene. To characterize COX10, encoding human heme A:farnesyltransferase, the genomic region was isolated and the gene structure and expression profile were determined. COX10 spans approximately 135 kb and consists of seven exons. Exons I-V are telomeric to the 1.5-Mb CMT1A monomer unit, whereas exon VII is located within this 1.5-Mb region. Exon VI is contained within the distal CMT1A-REP. All splice sites conform to the GT/AG rule. Analysis of the putative promoter region of the COX10 gene indicates that it lacks conventional TATA and CAAT boxes, but it does have several potential transcription factor-binding sites. This gene is expressed in multiple tissues with highest expression observed in the heart, skeletal muscle, and testis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms