Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May 12;326(1):53-60.
doi: 10.1016/s0014-2999(97)00136-2.

Endogenous nitric oxide inhibits leukotriene B4 release from rat alveolar macrophages

Affiliations

Endogenous nitric oxide inhibits leukotriene B4 release from rat alveolar macrophages

G Brunn et al. Eur J Pharmacol. .

Abstract

Effects of endogenous nitric oxide (NO) on the release of mediators of the lipoxygenase and cyclo-oxygenase pathway from rat alveolar macrophages were studied. Alveolar macrophages, freshly isolated or after 18-h culture, were incubated in (amino acid-free) Krebs medium and labelled with [3H]arachidonic acid. The release of [3H]leukotriene B4 and [3H]prostanoids (separated by high performance liquid chromatography) was determined. A 23187 was used as stimulus, as rising intracellular Ca2+ activates directly the phospholipase A2 and lipoxygenase pathway. A 23187 (10 microM) enhanced [3H]leukotriene B4 release from freshly prepared alveolar macrophages about 65-fold, but only 5- to 6-fold from cultured alveolar macrophages. Evoked [3H]leukotriene B4 release and spontaneous [3H]prostanoid release were inhibited when L-arginine (300 microM) was added to the Krebs incubation medium of alveolar macrophages, in which marked NO synthase had been induced by culture with lipopolysaccharides (10 microg/ml). Inhibitory effects of L-arginine were prevented by N(G)-monomethyl-L-arginine (L-NMMA, 100 microM). Inhibition of NO synthase during the culture period by L-NMMA (culture medium, in contrast to Krebs medium, already contains the substrate of NO synthase, L-arginine), resulted in attenuation of the 'culture-dependent' decline of the evoked release of [3H]leukotriene B4 and allowed lipopolysaccharides to cause an increase in spontaneous [3H]prostanoid release (i.e., to induce cyclo-oxygenase activity). In conclusion, in rat alveolar macrophages, endogenous NO appears to inhibit the release of mediators of the cyclo-oxygenase and lipoxygenase pathway through multiple sites of action.

PubMed Disclaimer

MeSH terms

LinkOut - more resources