Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;21(2):167-76.
doi: 10.1007/BF02529134.

Alkylation of [3H]8-OH-DPAT binding sites in rat cerebral cortex and hippocampus

Affiliations

Alkylation of [3H]8-OH-DPAT binding sites in rat cerebral cortex and hippocampus

E K Nénonéné et al. Neurochem Res. 1996 Feb.

Abstract

The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT(1A), WAY1OO135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes with N-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds with L-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [(3)H]8-OH-DPAT partially protected binding from the effects of both L-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [(3)H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (K(H) of 0.3-0.5 nM) corresponding to the 5-HT(1A) receptor, and a low-affinity site (KL of ca 25 nM). After in vivo alkylations, carried out by treating rats with N-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT(1A) receptor binding activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT(1A) receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [(3)H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [(3)H]8-OH-DPAT, besides labelling 5-HT(1A) receptors, also binds to other structures in rat cerebral cortex and hippocampus.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1994 Jul 1;478 ( Pt 1):67-73 - PubMed
    1. Neurochem Int. 1991;18(1):1-15 - PubMed
    1. J Neurochem. 1994 May;62(5):1822-34 - PubMed
    1. Trends Pharmacol Sci. 1993 Jun;14(6):233-6 - PubMed
    1. J Neurochem. 1992 Apr;58(4):1338-46 - PubMed

Publication types