Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron
- PMID: 9184238
- PMCID: PMC1169902
- DOI: 10.1093/emboj/16.10.2945
Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron
Abstract
Thus far, conventional biophysical techniques, such as NMR spectroscopy or X-ray crystallography, allow the determination, at atomic resolution, of only structural domains of large RNA molecules such as group I introns. Determination of their overall spatial organization thus still relies on modeling. This requires that a relatively high number of tertiary interactions are defined in order to get sufficient topological constraints. Here, we report the use of a modification interference assay to identify structural elements involved in interdomain interactions. We used this technique, in a group II intron, to identify the elements involved in the interactions between domain V and the rest of the molecule. Domain V contains many of the active site components of these ribozymes. In addition to a previously identified 11 nucleotide motif involved in the binding of the domain V terminal GAAA tetraloop, a small number of elements were shown to be essential for domain V binding. In particular, we show that domain III is specifically required for the interaction with sequences encompassing the conserved 2 nucleotide bulge of domain V.
Similar articles
-
A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.J Mol Biol. 2000 Sep 15;302(2):339-58. doi: 10.1006/jmbi.2000.4056. J Mol Biol. 2000. PMID: 10970738
-
A tertiary interaction that links active-site domains to the 5' splice site of a group II intron.Nature. 2000 Jul 20;406(6793):315-8. doi: 10.1038/35018589. Nature. 2000. PMID: 10917534
-
Multiple tertiary interactions involving domain II of group II self-splicing introns.J Mol Biol. 1997 Apr 4;267(3):520-36. doi: 10.1006/jmbi.1996.0882. J Mol Biol. 1997. PMID: 9126835
-
Atomic level architecture of group I introns revealed.Trends Biochem Sci. 2006 Jan;31(1):41-51. doi: 10.1016/j.tibs.2005.11.008. Epub 2005 Dec 13. Trends Biochem Sci. 2006. PMID: 16356725 Review.
-
Group II introns: structure, folding and splicing mechanism.Biol Chem. 2007 Jul;388(7):665-78. doi: 10.1515/BC.2007.090. Biol Chem. 2007. PMID: 17570818 Review.
Cited by
-
A three-dimensional perspective on exon binding by a group II self-splicing intron.EMBO J. 2000 Sep 15;19(18):5007-18. doi: 10.1093/emboj/19.18.5007. EMBO J. 2000. PMID: 10990464 Free PMC article.
-
The tertiary structure of group II introns: implications for biological function and evolution.Crit Rev Biochem Mol Biol. 2010 Jun;45(3):215-32. doi: 10.3109/10409231003796523. Crit Rev Biochem Mol Biol. 2010. PMID: 20446804 Free PMC article. Review.
-
Visualizing the solvent-inaccessible core of a group II intron ribozyme.EMBO J. 2001 Apr 17;20(8):2051-61. doi: 10.1093/emboj/20.8.2051. EMBO J. 2001. PMID: 11296237 Free PMC article.
-
A PNPase dependent CRISPR System in Listeria.PLoS Genet. 2014 Jan;10(1):e1004065. doi: 10.1371/journal.pgen.1004065. Epub 2014 Jan 9. PLoS Genet. 2014. PMID: 24415952 Free PMC article.
-
A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme.EMBO J. 1998 Dec 1;17(23):7105-17. doi: 10.1093/emboj/17.23.7105. EMBO J. 1998. PMID: 9843514 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources