Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May 9;692(2):427-35.
doi: 10.1016/s0378-4347(96)00518-x.

Determination of 5-fluorouracil and its main metabolites in plasma by high-performance liquid chromatography: application to a pharmacokinetic study

Affiliations

Determination of 5-fluorouracil and its main metabolites in plasma by high-performance liquid chromatography: application to a pharmacokinetic study

J M Joulia et al. J Chromatogr B Biomed Sci Appl. .

Abstract

This paper describes a relatively simple and sensitive high-performance liquid chromatographic assay (HPLC) with ultraviolet absorbance detection for 5-fluorouracil (5-FUra) and its two main metabolites, 5-fluorouridine (5-FUrd) and 5-fluoro-2'-deoxyuridine (5-FdUrd), in plasma. In this study, two plasma clean-up procedures involving addition of internal standard, solid-phase and liquid-liquid extractions have been developed. A reversed-phase Kromasil C18 column was used. The detection was performed at 268 nm for 5-FUra and at 275 nm for the two metabolites. Linear detection responses were obtained for concentrations ranging from 25 to 1000 ng/ml. The average recovery from plasma was 35, 42 and 48% for 5-FUra, 5-FUrd and 5-FdUrd, respectively. Precision, expressed as C.V., ranged from 2.7 to 13% and the mean recovery from 94 to 105%. The limits of quantitation and detection of the three analytes were 20 and 10 ng/ml, respectively. The method was used to monitor the pharmacokinetic profile of 5-FUra and its two metabolites in patients with metastatic colorectal cancer.

PubMed Disclaimer

MeSH terms

Substances