Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun 10;8(9):1073-85.
doi: 10.1089/hum.1997.8.9-1073.

Granulocyte-macrophage colony-stimulating factor and B7-2 combination immunogene therapy in an allogeneic Hu-PBL-SCID/beige mouse-human glioblastoma multiforme model

Affiliations

Granulocyte-macrophage colony-stimulating factor and B7-2 combination immunogene therapy in an allogeneic Hu-PBL-SCID/beige mouse-human glioblastoma multiforme model

I F Parney et al. Hum Gene Ther. .

Abstract

Glioblastoma multiforme is the most common primary central nervous system neoplasm. Its dismal prognosis has led to investigation of new treatment strategies such as immunogene therapy. We transduced the human glioblastoma cell line D54MG in vitro with genes encoding the proinflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), the T cell co-stimulatory molecule B7-2, or both (in a bicistronic vector) via retroviral vectors. Therapeutic gene expression by D54MG was high after transduction and selection (30 ng/10(6) cells/day for GM-CSF and > 2 orders of magnitude fluorescence shift on flow cytometry for B7-2). The effect of GM-CSF and/or B7-2 transduction on D54MG tumor growth in vivo was monitored in a novel allogeneic human peripheral blood lymphocyte-severe combined immunodeficiency mouse (Hu-PBL-SCID) model. GM-CSF- or B7-2-transduced tumors showed growth suppression in hu-PBL-reconstituted mice compared to untransduced and/or unreconstituted controls. Growth suppression was greatest for B7-2. Furthermore, vaccination with irradiated GM-CSF/B7-2-transduced tumor cells markedly inhibited growth of wild-type tumors at distant sites. Thus, this study illustrates a potential gene therapy strategy for glioblastoma multiforme patients using GM-CSF and/or B7-2 transduced tumor vaccines. Although extension of these allogeneic studies to an autologous system is critical, this is the first demonstration of in vivo efficacy of combination GM-CSF and B7-2 immunogene therapy for human glioblastoma multiforme.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources