Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun 12;14(23):2857-61.
doi: 10.1038/sj.onc.1201139.

Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage

Affiliations

Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage

K Arai et al. Oncogene. .

Abstract

We report the cloning of a human homolog of the yeast OGGC1 gene, which encodes a DNA glycosylase that excises an oxidatively damaged form of guanine, 8-hydroxyguanine (also known as 7,8-dihydro-8-oxoguanine). Since the deduced amino acid sequence (68 amino acids) of a human expressed sequence tag, N55394, matched a short stretch of yeast OGG1 protein with greater than 40% amino acid identity, a full length cDNA clone was isolated from a HeLa cell cDNA library with the N55394 clone as a probe. The cDNA clone encodes a predicted protein of 345 amino acids which is homologous to yeast OGG1 protein throughout the entire polypeptide sequence and shares 38% amino acid identity with yeast OGG1 protein. Moreover, we found that both a human homolog and yeast OGG1 protein possess two distinct DNA binding motifs, a helix-hairpin-helix (HhH) motif and a C2H2 zinc finger like motif, and a domain homologous to human and E. coli MutY proteins. Expression of a human homolog suppressed spontaneous mutagenesis of an E. coli (mutM mutY) mutant as in the case of yeast OGG1 protein. The gene was ubiquitously expressed in a variety of human organs and mapped to chromosome 3p26.2. These results strongly suggest that the gene isolated here is a human counterpart of the yeast OGGI gene and is involved in the repair of oxidative DNA damage in human cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources