Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun 15;158(12):6019-28.

Functional dissection of systemic lupus erythematosus using congenic mouse strains

Affiliations
  • PMID: 9190957

Functional dissection of systemic lupus erythematosus using congenic mouse strains

L Morel et al. J Immunol. .

Abstract

We describe the in vivo phenotypes associated with three genomic intervals containing systemic lupus erythematosus (SLE)-susceptibility genes derived from the SLE-prone NZM2410 strain on a C57BL/6 genome. These intervals were identified previously via a genome-wide analysis of SLE susceptibility in a (NZM2410 x C57BL/6)F1 x NZM2410 backcross, and transferred independently on a C57BL/6 background to produce three congenic strains: B6.NZMc1 carrying Sle1, B6.NZMc4 carrying Sle2, and B6.NZMc7 carrying Sle3. B6.NZMc1 develops high titers of IgG anti-nuclear autoantibodies in the absence of any severe nephritis. B6.NZMc4 spontaneously develops elevated levels of IgM, but not IgG Abs against several Ags, indicative of polyclonal activation or polyreactivity affecting the B cell lineage. B6.NZMc7 causes the production of IgM and IgG Abs against both nuclear and non-nuclear Ags and the development of severe lupus nephritis. Therefore, our results show that three defined genomic intervals from the NZM2410 SLE-prone strain each contribute specific component phenotypes that have been associated with SLE, which in combination can mediate severe disease.

PubMed Disclaimer

Publication types

LinkOut - more resources