Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 May;43(2):121-31.
doi: 10.1016/s0167-8140(97)01899-9.

Potential clinical impact of normal-tissue intrinsic radiosensitivity testing

Affiliations
Review

Potential clinical impact of normal-tissue intrinsic radiosensitivity testing

S M Bentzen. Radiother Oncol. 1997 May.

Abstract

A critical appraisal is given of the possible benefit from a reliable pre-treatment knowledge of individual normal-tissue sensitivity to radiotherapy. The considerations are in part, but not exclusively, based on the recent experience with in vitro colony-forming assays of the surviving fraction at 2 Gy, the SF2. Three strategies are reviewed: (1) to screen for rare cases with extreme radiosensitivity, so-called over-reactors, and treat these with reduced total dose, (2) to identify the sensitive tail of the distribution of 'normal' radiosensitivities, refer these patients to other treatment, and to escalate the dose to the remaining patients, or (3) to individualize dose prescriptions based on individual radiosensitivity, i.e. treating to isoeffect rather than to a specific dose-fractionation schedule. It is shown that these strategies will have a small, if any, impact on routine radiotherapy. Screening for over-reactors is hampered by the low prevalence of these among otherwise un-selected patients that leads to a low positive predictive value of in vitro radiosensitivity assays. It is argued, that this problem may persist even if the noise on current assays could be reduced to (the unrealistic value of) zero, simply because of the large biological variation in SF2. Removing the sensitive tail of the patient population, will only have a minor effect on the dose that could be delivered to the remaining patients, because of the sigmoid shape of empirical dose-response relationships. Finally, individualizing dose prescriptions based exclusively on information from a normal-tissue radiosensitivity assay, leads to a nearly symmetrical distribution of dose-changes that would produce a very small gain, or even a loss, of tumor control probability if implemented in the clinic. From a theoretical point of view, other strategies could be devised and some of these are considered in this review. Right now the most promising clinical use of in vitro radiosensitivity assays may be as a guide for the prescription of treatment schedules that are costly or involves a high risk of complications. Examples of this are certain strategies attempting to widen the therapeutic window, the use of very high doses or re-irradiation of a previously irradiated region, or the selection of patients for experimental strategies like the use of biological response modifiers to reduce normal-tissue toxicity. Finally, published data are summarized on the possible correlation between the radiosensitivities of tumor and normal tissues or between the sensitivities of various normal tissues.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources