Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;24(4):767-78.
doi: 10.1046/j.1365-2958.1997.3871751.x.

EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V

Affiliations
Free article

EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V

W Brunder et al. Mol Microbiol. 1997 May.
Free article

Abstract

In this study, we identified and characterized a novel secreted protein, the extracellular serine protease EspP, which is encoded by the large plasmid of enterohaemorrhagic Escherichia coli (EHEC) O157:H7. The corresponding espP gene consists of a 3900 bp open reading frame that is able to encode a 1300-amino-acid protein. EspP is synthesized as a large precursor which is then processed at the N- and C-termini during secretion. It can be grouped into the autotransporter protein family. The deduced amino acid sequence of EspP showed homology to several secreted or surface-exposed proteins of pathogenic bacteria, in particular EspC of enteropathogenic E. coli and IgA1 proteases from Neisseria spp. and Haemophilus influenzae. Hybridization experiments and immunoblot analysis of clinical EHEC isolates showed that EspP is widespread among EHEC of the serogroup O157 and that it also exists in serogroup 026. A specific immune response against EspP was detected in sera from patients suffering from EHEC infections. Functional analysis showed that EspP is a protease capable of cleaving pepsin A and human coagulation factor V. Degradation of factor V could contribute to the mucosal haemorrhage observed in patients with haemorrhagic colitis.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources