Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Jul;21(4):519-23.
doi: 10.1016/s0149-7634(96)00029-2.

Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum

Affiliations
Review

Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum

P Calabresi et al. Neurosci Biobehav Rev. 1997 Jul.

Abstract

Several electrophysiological studies have addressed the interaction between glutamate and dopamine within the striatum. Although the results obtained from these studies were often conflicting, more recently the characterization of new forms of synaptic plasticity in the basal ganglia provided a possible integrative explanation of the different electrophysiological data regarding the interaction between these transmitters. In this review we will try to summarize and discuss the available data concerning the possible impact of the functional role of D1 and D2 receptor activation on the modulation of the glutamatergic corticostriatal pathway. Moreover, we will also describe the function of the striatum in the integration of glutamatergic and dopaminergic inputs to produce long-term changes of synaptic efficacy (long-term depression, long-term potentiation). Finally, we will consider the implication of the interaction between dopamine and glutamate in the regulation of energetic metabolism whose failure is responsible for neuronal death.

PubMed Disclaimer

Publication types

LinkOut - more resources