Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997;382(2):87-94.

[Morphologic correlation of functional abdominal wall mechanics after mesh implantation]

[Article in German]
Affiliations
  • PMID: 9198710
Comparative Study

[Morphologic correlation of functional abdominal wall mechanics after mesh implantation]

[Article in German]
B Klosterhalfen et al. Langenbecks Arch Chir. 1997.

Abstract

Modern surgical hernia repair depends increasingly on synthetic meshes for reconstruction of the abdominal wall. Despite the undisputed advantages of the synthetic meshes currently available, reports of late complications after implantation are accumulating. It is essential that the synthetic meshes be improved, but this makes a standardized animal model necessary for evaluation of their biocompatibility on both functional and morphological levels. In the present study, commercially available polypropylene and polyester meshes were implanted in a rat model, and detailed morphological and morphometric analysis were carried out. Correlations between the morphological and morphometric data and the function of the artificial abdominal wall were then sought. In summary, the data show that the mesh construction currently available are oversized and definitely restrict the function of the artificial abdominal wall. The degree of inflammation and fibrosis, the pattern of fibrosis, and the composition of the extracellular matrix exert decisive influences on the function. Fibrosis and inflammation are caused less by the material itself, however, than by its density, the way it is processed, and its surface. Future, that is to say second-generated, mesh constructions should be designed with the aims of reducing the amount of material used and finding material-specific processing methods in mind, to improve the functionally and morphologically defined biocompatibility.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources