Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul 4;272(27):16783-92.
doi: 10.1074/jbc.272.27.16783.

Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes

Affiliations

Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes

A Bacolla et al. J Biol Chem. .

Abstract

The properties of duplex CTG.CAG and CGG.CCG, which are involved in the etiology of several hereditary neurodegenerative diseases, were investigated by a variety of methods, including circularization kinetics, apparent helical repeat determination, and polyacrylamide gel electrophoresis. The bending moduli were 1.13 x 10(-19) erg.cm for CTG and 1.27 x 10(-19) erg.cm for CGG, approximately 40% less than for random B-DNA. Also, the persistence lengths of the triplet repeat sequences were approximately 60% the value for random B-DNA. However, the torsional moduli and the helical repeats were 2.3 x 10(-19) erg.cm and 10.4 base pairs (bp)/turn for CTG and 2.4 x 10(-19) erg.cm and 10.3 bp/turn for CGG, respectively, all within the range for random B-DNA. Determination of the apparent helical repeat by the band shift assay indicated that the writhe of the repeats was different from that of random B-DNA. In addition, molecules of 224-245 bp in length (64-71 triplet repeats) were able to form topological isomers upon cyclization. The low bending moduli are consistent with predictions from crystallographic variations in slide, roll, and tilt. No unpaired bases or non-B-DNA structures could be detected by chemical and enzymatic probe analyses, two-dimensional agarose gel electrophoresis, and immunological studies. Hence, CTG and CGG are more flexible and highly writhed than random B-DNA and thus would be expected to act as sinks for the accumulation of superhelical density.

PubMed Disclaimer

Publication types