Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul 4;272(27):17216-22.
doi: 10.1074/jbc.272.27.17216.

Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells

Affiliations
Free article

Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells

A Ginestra et al. J Biol Chem. .
Free article

Abstract

Membrane vesicles are shed by tumor cells both in vivo and in vitro. Although their functions are not well understood, it has been proposed that they may play multiple roles in tumor progression. We characterized membrane vesicles from human HT1080 fibrosarcoma cell cultures for the presence of proteinases involved in tumor invasion. By gelatin zymography and Western blotting, these vesicles showed major bands corresponding to the zymogen and active forms of gelatinase B (MMP-9) and gelatinase A (MMP-2) and to the MMP-9. tissue inhibitor of metalloproteinase 1 complex. Both gelatinases appeared to be associated with the vesicle membrane. HT1080 cell vesicles also showed a strong, plasminogen-dependent fibrinolytic activity in 125I fibrin assays; this activity was associated with urokinase plasminogen activator, as shown by casein zymography and Western blotting. Urokinase was bound to its high affinity receptor on the vesicle membrane. Addition of plasminogen resulted in activation of the progelatinases associated with the vesicles, indicating a role of the urokinase-plasmin system in MMP-2 and MMP-9 activation. We propose that vesicles shed by tumor cells may provide a large membrane surface for the activation of membrane-associated proteinases involved in extracellular matrix degradation and tissue invasion.

PubMed Disclaimer

Publication types

LinkOut - more resources