Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1997 Jul;83(1):40-5.
doi: 10.1152/jappl.1997.83.1.40.

Neuromuscular factors contributing to in vivo eccentric moment generation

Affiliations
Free article
Clinical Trial

Neuromuscular factors contributing to in vivo eccentric moment generation

S Webber et al. J Appl Physiol (1985). 1997 Jul.
Free article

Abstract

Muscle series elasticity and its contribution to eccentric moment generation was examined in humans. While subjects [male, n = 30; age 26.3 +/- 4.8 (SD) yr; body mass 78.8 +/- 13.1 kg] performed an isometric contraction of the knee extensors at 60 degrees of knee flexion, a quick stretch was imposed with a 12 degrees -step displacement at 100 degrees /s. The test was performed at 10 isometric activation levels ranging from 1.7 to 95.2% of maximal voluntary contraction (MVC). A strong linear relationship was observed between the peak imposed eccentric moment derived from quick stretch and the isometric activation level (y = 1.44x + 7.08; r = 0.99). This increase in the eccentric moment is consistent with an actomyosin-dependent elasticity located in series with the contractile element of muscle. By extrapolating the linear relationship to 100% MVC, the predicted maximum eccentric moment was found to be 151% MVC, consistent with in vitro data. A maximal voluntary, knee extensor strength test was also performed (5-95 degrees, 3 repetitions, +/-50, 100, 150, 200, and 250 degrees/s). The predicted maximum eccentric moment was 206% of the angle- and velocity-matched, maximal voluntary eccentric moments. This was attributed to a potent neural regulatory mechanism that limits the recruitment and/or discharge of motor units during maximal voluntary eccentric contractions.

PubMed Disclaimer

Publication types

LinkOut - more resources