Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul 18;272(29):18077-81.
doi: 10.1074/jbc.272.29.18077.

Synergy between anions and farnesyldiphosphate competitive inhibitors of farnesyl:protein transferase

Affiliations
Free article

Synergy between anions and farnesyldiphosphate competitive inhibitors of farnesyl:protein transferase

J D Scholten et al. J Biol Chem. .
Free article

Abstract

Investigation of the comparative activities of various inhibitors of farnesyl:protein transferase (FPTase) has led to the observation that the presence of phosphate or pyrophosphate ions in the assay buffer increases the potency of farnesyl diphosphate (FPP) competitive inhibitors. In addition to exploring the phenomenon of phosphate synergy, we report here the effects of various other ions including sulfate, bicarbonate, and chloride on the inhibitory ability of three FPP competitive compounds: Cbz-His-Tyr-Ser(OBn)TrpNH2 (2), Cbz-HisTyr(OPO42-)-Ser(OBn)TrpNH2 (3), and alpha-hydroxyfarnesyl phosphonic acid (4). Detailed kinetic analysis of FPTase inhibition revealed a high degree of synergy for compound 2 and each of these ions. Phosphorylation of 2 to give 3 completely eliminated any ionic synergistic effect. Moreover, these ions have an antagonistic effect on the inhibitory potency of compound 4. The anions in the absence of inhibitor exhibit non-competitive inhibition with respect to FPP. These results suggest that phosphate, pyrophosphate, bicarbonate, sulfate, and chloride ions may be binding at the active site of both free enzyme and product-bound enzyme with normal substrates. These bound complexes increase the potency of FPP competitive inhibitors and mimic an enzyme:product form of the enzyme. None of the anions studied here proved to be synergistic with respect to inhibition of geranylgeranyl transferase I. These findings provide insight into the mechanism of action of FPP competitive inhibitors for FPTase and point to enzymatic differences between FPTase and geranylgeranyl transferase I that may facilitate the design of more potent and specific inhibitors for these therapeutically relevant target enzymes.

PubMed Disclaimer

MeSH terms

LinkOut - more resources