Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Jul 18;272(29):18222-31.
doi: 10.1074/jbc.272.29.18222.

Organization and myogenic restricted expression of the murine serum response factor gene. A role for autoregulation

Affiliations
Free article
Comparative Study

Organization and myogenic restricted expression of the murine serum response factor gene. A role for autoregulation

N S Belaguli et al. J Biol Chem. .
Free article

Abstract

Serum response factor (SRF), a member of an ancient family of DNA-binding proteins, is generally assumed to be a ubiquitous transcription factor involved in regulating growth factor-responsive genes. However, avian SRF was recently shown (Croissant, J. D., Kim, J.-H., Eichele, G., Goering, L., Lough, J., Prywes, R., and Schwartz, R. J. (1996) Dev. Biol. 177, 250-264) to be preferentially expressed in myogenic lineages and is required for regulating post-replicative muscle gene expression. Given the central importance of SRF for the muscle tissue-restricted expression of the striated alpha-actin gene family, we wanted to determine how SRF might contribute to this muscle-restricted expression. Here we have characterized the murine SRF genomic locus, which has seven exons interrupted by six introns, with the entire locus spanning 11 kilobases. Murine SRF transcripts were processed to two 3'-untranslated region polyadenylation signals, yielding 4.5- and 2.5-kilobase mRNA species. Murine SRF mRNA levels were the highest in adult skeletal and cardiac muscle, but barely detected in liver, lung, and spleen tissues. During early mouse development, in situ hybridization analysis revealed enrichment of SRF transcripts in the myotomal portion of somites, the myocardium of the heart, and the smooth muscle media of vessels of mouse embryos. Likewise, murine SRF promoter activity was tissue-restricted, being 80-fold greater in primary skeletal myoblasts than in liver-derived HepG2 cells. In addition, SRF promoter activity increased 6-fold when myoblasts withdrew from the cell cycle and fused into differentiated myotubes. A 310-base pair promoter fragment depended upon multiple intact serum response elements in combination with Sp1 sites for maximal myogenic restricted activity. Furthermore, cotransfected SRF expression vector stimulated SRF promoter transcription, whereas dominant-negative SRF mutants blocked SRF promoter activity, demonstrating a positive role for an SRF-dependent autoregulatory loop.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources