Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;15(4):433-40.
doi: 10.1016/s0730-725x(96)00378-5.

Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia

Affiliations

Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia

J S Thornton et al. Magn Reson Imaging. 1997.

Abstract

Measurements of tissue water apparent diffusion coefficient (ADC) performed with diffusion sensitization applied separately along the x, y, and z axes revealed significant diffusion anisotropy in both cerebral white and gray matter in six newborn (< 24 h old) piglets. Mean baseline white matter ADC for a particular region of interest was 125.8% (SD 32.0%; p < .001) greater when the diffusion gradients were applied along the y axis as compared to along the x. For the cortical gray matter region considered, the situation was reversed, the mean ADC value measured along x exceeding that along y by 15.2% (SD 6.1%; p < .01). Forty-three hours subsequent to a transient cerebral hypoxic-ischaemic insult, phosphorous MRS measurements indicated that the animals had suffered severe secondary cerebral energy failure. This was accompanied by a significant (p < .01) decrease in the white matter anisotropy, such that the mean y direction ADC now exceeded that along the x by only 70.9% (SD 29.4%; p < .03). There was no change in the gray matter anisotropy. The average of the ADC values measured in the x, y, and z directions had decreased by 35.3% (SD 18.5%; p < .01) in white matter and 31.4% (SD 21.9%; p < .05) in cortical gray matter. Diffusion anisotropy measurements may provide additional information useful in the characterisation of hypoxic-ischaemic injury in the neonatal brain, and must be considered if tissue water ADC values are to be unambiguously interpreted in this context.

PubMed Disclaimer

Publication types

LinkOut - more resources