Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr-May;36(4-5):655-64.
doi: 10.1016/s0028-3908(97)00059-2.

5-HT3 receptors in outside-out patches of N1E-115 neuroblastoma cells: basic properties and effects of pentobarbital

Affiliations

5-HT3 receptors in outside-out patches of N1E-115 neuroblastoma cells: basic properties and effects of pentobarbital

M Barann et al. Neuropharmacology. 1997 Apr-May.

Abstract

A fast solution exchange system (Dilger and Brett, 1990; Biophysics Journal 57: 723-731) with an exchange rate < 1 msec was used to study 5-HT3 (5-HT; 5-hydroxytryptamine) receptor-mediated currents in superfused outside-out patches of N1E-115 mouse neuroblastoma cells. At negative membrane potentials, 5-HT induced inward currents in a concentration-dependent manner (IC50 = 3.8 microM, Hill coefficient = 1.8). The mean peak current at a near-maximally effective 5-HT concentration of 30 microM was 20.6 pA. The 5-HT3 receptor antagonist ondansetron (0.3 nM) reversibly inhibited the 5-HT (30 microM) signal by approximately 50%. The currents induced during application of 30 microM 5-HT for 2 sec were characterized by inward rectification, a monophasic onset (tau ON = 37.5 msec) and, after reaching a peak, a monophasic decay (desensitization; tau OFF = 391 msec). Onset and decay were slower at lower 5-HT concentrations. The recovery of fully desensitized patches required a washout period of 45 sec. Pentobarbital inhibited 5-HT-induced (30 microM) currents in a concentration-dependent manner. The maximally obtainable inhibition with a given pentobarbital concentration was reached already when it was exclusively coapplied with 5-HT (IC50 = 135 microM. Hill coefficient = -0.7), since additional preexposure for at least 45 sec did not alter the concentration-response curve of pentobarbital. In conclusion, outside-out patches of N1E-115 cells are suitable to study the kinetic properties of 5-HT3 receptor channels. The results obtained in this model with pentobarbital are compatible with the suggestion that the inhibitory action of pentobarbital on 5-HT3 receptors is dependent on the agonist-activated (open) channel.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources