Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul-Aug;44(4):314-20.
doi: 10.1111/j.1550-7408.1997.tb05672.x.

Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta)

Affiliations

Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta)

J M Chesnick et al. J Eukaryot Microbiol. 1997 Jul-Aug.

Abstract

The establishment of chloroplasts as cellular organelles in the dinoflagellate, heterokont (stramenopile), haptophyte, and cryptophyte algae is widely accepted to have been the result of secondary endosymbiotic events, that is, the uptake of a photosynthetic eukaryote by a phagotrophic eukaryote. However, the circumstances that promote such associations between two phylogenetically distinct organisms and result in the integration of their genomes to form a single functional photosynthetic cell is unclear. The dinoflagellates Peridinium foliaceum and Peridinium balticum are unusual in that each contains a membrane-bound eukaryotic heterokont endosymbiont. These symbioses have been interpreted, through data derived from ultrastructural and biochemical investigations, to represent an intermediate stage of secondary endosymbiotic chloroplast acquisition. In this study we have examined the phylogenetic origin of the P. foliaceum and P. balticum heterokont endosymbionts through analysis of their nuclear small subunit ribosomal RNA genes. Our analyses clearly demonstrate both endosymbionts are pennate diatoms belonging to the family Bacillariaceae. Since members of the Bacillariaceae are usually benthic, living on shallow marine sediments, the manner in which establishment of a symbiosis between a planktonic flagellated dinoflagellate and a bottom-dwelling diatom is discussed. In particular, specific environmentally-associated life strategy stages of the host and symbiont, coupled with diatom food preferences by the dinoflagellate, may have been vital to the formation of this association.

PubMed Disclaimer

Publication types

LinkOut - more resources