Oral-aboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore
- PMID: 9227904
- DOI: 10.1046/j.1440-169x.1997.t01-2-00013.x
Oral-aboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore
Abstract
Intracellular signaling mediated by calcium ions has been implicated as important in controlling cell activity. The ability of calcium ionophore (A23187), which causes an increase in calcium ion concentration in the cytoplasm, to alter the pattern of differentiation of cells during sea urchin development was examined. The addition of A23187 to embryos for 3 h during early cleavage causes dramatic changes in their development during gastrulation. Using tissue-specific cDNA probes and antibodies, it was shown that A23187 causes the disruption of oral-aboral ectoderm differentiation of sea urchin embryos. The critical period for A23187 to disturb the oral-aboral ectoderm differentiation is during the cleavage stage, and treatment of embryos with A23187 after that time has little effect. The A23187 does not affect the formation of the three germ layers. These results indicate that intracellular signals mediated by calcium ions may play a key role in establishment of the oral-aboral axis during sea urchin development.
Similar articles
-
Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.Mech Dev. 2011 Jan-Feb;128(1-2):71-89. doi: 10.1016/j.mod.2010.11.001. Epub 2010 Nov 5. Mech Dev. 2011. PMID: 21056656
-
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.Dev Biol. 2008 Aug 1;320(1):49-59. doi: 10.1016/j.ydbio.2008.04.012. Epub 2008 Apr 20. Dev Biol. 2008. PMID: 18582858
-
Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.Dev Biol. 2003 Sep 1;261(1):55-81. doi: 10.1016/s0012-1606(03)00278-1. Dev Biol. 2003. PMID: 12941621
-
A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.J Exp Zool B Mol Dev Evol. 2008 Jan 15;310(1):41-53. doi: 10.1002/jez.b.21121. J Exp Zool B Mol Dev Evol. 2008. PMID: 16838294 Review.
-
Gene regulatory networks for ectoderm specification in sea urchin embryos.Biochim Biophys Acta. 2009 Apr;1789(4):261-7. doi: 10.1016/j.bbagrm.2009.02.002. Epub 2009 Mar 21. Biochim Biophys Acta. 2009. PMID: 19429544 Review.
Cited by
-
Sea urchin arylsulfatase, an extracellular matrix component, is involved in gastrulation during embryogenesis.Dev Genes Evol. 2009 Jun;219(6):281-8. doi: 10.1007/s00427-009-0289-5. Epub 2009 May 21. Dev Genes Evol. 2009. PMID: 19458963
-
Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.Dev Biol. 2009 Jun 1;330(1):123-30. doi: 10.1016/j.ydbio.2009.03.017. Epub 2009 Mar 27. Dev Biol. 2009. PMID: 19328778 Free PMC article.
-
Cell-surface arylsulfatase A and B on sinusoidal endothelial cells, hepatocytes, and Kupffer cells in mammalian livers.Med Mol Morphol. 2009 Jun;42(2):63-9. doi: 10.1007/s00795-009-0447-x. Epub 2009 Jun 18. Med Mol Morphol. 2009. PMID: 19536613
-
Ion flow regulates left-right asymmetry in sea urchin development.Dev Genes Evol. 2006 May;216(5):265-76. doi: 10.1007/s00427-005-0051-6. Epub 2006 Mar 14. Dev Genes Evol. 2006. PMID: 16534626
-
The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.Dev Genes Evol. 2005 Sep;215(9):450-59. doi: 10.1007/s00427-005-0006-y. Epub 2005 Aug 3. Dev Genes Evol. 2005. PMID: 16078091