Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul 17;388(6639):279-84.
doi: 10.1038/40870.

Synapse specificity of long-term potentiation breaks down at short distances

Affiliations

Synapse specificity of long-term potentiation breaks down at short distances

F Engert et al. Nature. .

Erratum in

  • Nature 1997 Aug 14;388(6643):698

Abstract

Long-term potentiation (LTP), the long-lasting increase in synaptic transmission, has been proposed to be a cellular mechanism essential for learning and memory, neuronal development, and circuit reorganization. In the original theoretical and experimental work it was assumed that only synapses that had experienced concurrent pre- and postsynaptic activity are subject to synaptic modification. It has since been shown, however, that LTP is also expressed in synapses on neighbouring neurons that have not undergone the induction procedure. Yet, it is still believed that this spread of LTP is limited to adjacent postsynaptic cells, and does not occur for synapses on neighbouring input fibres. However, for technical reasons, tests for 'input specificity' were always done for synapses relatively far apart. Here we have used a new local superfusion technique, which allowed us to assess the synaptic specificity of LTP with a spatial resolution of approximately 30 microm. Our results indicate that there is no input specificity at a distance of less than 70 microm. Synapses in close proximity to a site of potentiation are also potentiated regardless of their own history of activation, whereas synapses far away show no potentiation.

PubMed Disclaimer

LinkOut - more resources