Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul;200(Pt 13):1919-29.
doi: 10.1242/jeb.200.13.1919.

Three-dimensional kinematics and limb kinetic energy of running cockroaches

Affiliations

Three-dimensional kinematics and limb kinetic energy of running cockroaches

R Kram et al. J Exp Biol. 1997 Jul.

Abstract

We tested the hypothesis that fast-running hexapeds must generate high levels of kinetic energy to cycle their limbs rapidly compared with bipeds and quadrupeds. We used high-speed video analysis to determine the three-dimensional movements of the limbs and bodies of cockroaches (Blaberus discoidalis) running on a motorized treadmill at 21 cm s-1 using an alternating tripod gait. We combined these kinematic data with morphological data to calculate the mechanical energy produced to move the limbs relative to the overall center of mass and the mechanical energy generated to rotate the body (head + thorax + abdomen) about the overall center of mass. The kinetic energy involved in moving the limbs was 8 microJ stride-1 (a power output of 21 mW kg-1, which was only approximately 13% of the external mechanical energy generated to lift and accelerate the overall center of mass at this speed. Pitch, yaw and roll rotational movements of the body were modest (less than +/- 7 degrees), and the mechanical energy required for these rotations was surprisingly small (1.7 microJ stride-1 for pitch, 0.5 microJ stride-1 for yaw and 0.4 microJ stride-1 for roll) as was the power (4.2, 1.2 and 1.1 mW kg-1, respectively). Compared at the same absolute forward speed, the mass-specific kinetic energy generated by the trotting hexaped to swing its limbs was approximately half of that predicted from data on much larger two- and four-legged animals. Compared at an equivalent speed (mid-trotting speed), limb kinetic energy was a smaller fraction of total mechanical energy for cockroaches than for large bipedal runners and hoppers and for quadrupedal trotters. Cockroaches operate at relatively high stride frequencies, but distribute ground reaction forces over a greater number of relatively small legs. The relatively small leg mass and inertia of hexapeds may allow relatively high leg cycling frequencies without exceptionally high internal mechanical energy generation.

PubMed Disclaimer

Publication types

LinkOut - more resources