Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul;87(1):94-101.
doi: 10.1097/00000542-199707000-00013.

Halothane attenuation of calcium sensitivity in airway smooth muscle. Mechanisms of action during muscarinic receptor stimulation

Affiliations

Halothane attenuation of calcium sensitivity in airway smooth muscle. Mechanisms of action during muscarinic receptor stimulation

D H Bremerich et al. Anesthesiology. 1997 Jul.

Abstract

Background: In airway smooth muscle, muscarinic receptor stimulation is thought to increase calcium (Ca2+) sensitivity via a guanosine 5'-triphosphate (GTP)-binding protein/protein kinase C (PKC)-mediated mechanism. This study treated the hypothesis that halothane reduces Ca2+ sensitivity during muscarinic receptor stimulation by inhibiting these second messenger pathways.

Methods: A beta-escin permeabilized canine tracheal smooth muscle preparation was used in which the cytosolic Ca2+ concentration ([Ca2+]i) is controlled and the GTP-binding protein/ PKC pathways remain intact and can be activated. The muscarinic receptor was activated with acetylcholine plus GTP; the GTP-binding proteins were directly activated with a nonhydrolyzable form of GTP, guanosine 5'-O-(3-thiotriphosphate; GTP gamma S); and PKC was directly activated with the PKC agonist phorbol 12,13-dibutyrate (PDBu).

Results: Free Ca2+ caused a concentration-dependent increase in force. Acetylcholine plus GTP significantly decreased the median effective concentration for free Ca2+ from 0.52 +/- 0.06 microM to 0.21 +/- 0.02 microM, demonstrating an increase in Ca2+ sensitivity. Halothane (0.99 +/- 0.04 mM, equivalent to approximately 4 minimum alveolar concentration in dogs) significantly attenuated this increase in Ca2+ sensitivity induced by acetylcholine plus GTP, increasing the median effective concentration for free Ca2+ from 0.21 +/- 0.02 microM to 0.31 +/- 0.03 microM. However, halothane did not affect the increases in Ca2+ sensitivity induced by GTP gamma S or PDBu.

Conclusions: Halothane had no effect on increased Ca2+ sensitivity caused by direct activation of GTP-binding proteins with GTP gamma S or PKC with PDBu, suggesting that halothane attenuates acetylcholine-induced Ca2+ sensitization via a mechanism independent of these pathways in beta-escin-permeabilized canine tracheal smooth muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources