Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 1;272(31):19187-92.
doi: 10.1074/jbc.272.31.19187.

Activation of RNase L by 2',5'-oligoadenylates. Biophysical characterization

Affiliations
Free article

Activation of RNase L by 2',5'-oligoadenylates. Biophysical characterization

J L Cole et al. J Biol Chem. .
Free article

Abstract

Ribonuclease L (RNase L) is an endoribonuclease that is activated upon binding of adenosine oligomers linked 2' to 5' to cleave viral and cellular RNAs. We recently proposed a model for activation in which activator A binds to monomer, E, to form EA, which subsequently dimerizes to the active form, E2A2 (Cole, J. L., Carroll, S. S., and Kuo, L. C. (1996) J. Biol. Chem. 271, 3978-3981). Here, we have employed this model to define the equilibrium constants for activator binding (Ka) and dimerization of EA to E2A2 (Kd) by equilibrium analytical ultracentrifugation and fluorescence measurements. Multi-wavelength sedimentation data were globally fit to the model above, yielding values of Ka = 1.69 microM and Kd = 17. 8 nM for 2',5'-linked adenosine trimer. Fluorescent conjugates of 2',5'-linked adenosine trimer with 7-hydroxycoumarin have been prepared. The coumarin emission anisotropy shows a large increases upon binding to RNase L. Analysis of anisotropy titrations yields values of Ka and Kd close to those obtained by sedimentation. The sedimentation parameters for unmodified 2',5'-linked adenosine trimer also agree with those obtained by enzyme kinetic methods (Carroll, S. S., Cole, J. L., Viscount, T., Geib, J., Gehman, J., and Kuo, L. C. (1997) J. Biol. Chem. 272, 19193-19198). Thus, the data presented here clearly define the energetics of RNase L activation and support the minimal activation model.

PubMed Disclaimer

LinkOut - more resources