Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul-Aug;70(4):428-35.
doi: 10.1086/515855.

Ion regulation in ion-poor acidic water by the blackskirt tetra (Gymnocorymbus ternetzi), a fish native to the Amazon River

Affiliations

Ion regulation in ion-poor acidic water by the blackskirt tetra (Gymnocorymbus ternetzi), a fish native to the Amazon River

R J Gonzalez et al. Physiol Zool. 1997 Jul-Aug.

Abstract

We examined the ionoregulatory capabilities of the blackskirt tetra (Gymnocorymbus ternetzi), which is native to ion-poor acidic waters of the Amazon River. Examination of Na+ uptake, which was only slightly sensitive to the uptake blocker amiloride, revealed several specializations for uptake in these waters. Kinetic analysis of Na+ uptake (at pH 6.5) revealed a high maximum rate of uptake and a low Michaelis-Menten constant, which allows the tetras to take up Na+ at high rates even at very low water levels. At pH 4.5, a pH where they experience sizable ion disturbances, they displayed several mechanisms to restore balance. Kinetic analysis at pH 4.5 revealed that the maximum uptake rate rose 67% while the Michaelis-Menten constant remained unchanged. Further tests showed that the upregulation of Na+ uptake occurred within 12 h in response to a doubling of Na+ efflux. Despite these specializations of the Na+ uptake mechanism, blackskirt tetras were not especially tolerant of low pH. Upon exposure to pH 4.0, they experienced a massive loss of Na+ due to a fourfold increase of Na+ efflux (relative to pH 5.0) and an 80% inhibition of uptake. Measurement of Na+ efflux in waters with different Ca2+ levels and in the presence of LaCl, a strong Ca2+ competitor, correlated the stimulation of Na+ efflux at low pH with a low branchial affinity for Ca2+. These tests indicate that blackskirt tetras possess abilities to resist the disruptive effects of moderately low pH but cannot survive in waters with a pH of 4.0 or less because of leaching of Ca2+ from branchial tight junctions, which stimulates ion losses.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources