Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts
- PMID: 9239401
- PMCID: PMC508221
- DOI: 10.1172/JCI119564
Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts
Abstract
We have hypothesized that T cell cytokines participate in the pathogenesis of graft arterial disease (GAD). This study tested the consequences of IFN-gamma deficiency on arterial and parenchymal pathology in murine cardiac allografts. Hearts from C-H-2(bm12)KhEg (bm12, H-2(bm12)) were transplanted into C57/B6 (B6, H-2(b)), wild-type, or B6 IFN-gamma-deficient (GKO) recipients after immunosuppression by treatment with anti-CD4 and anti-CD8 mAbs. In wild-type recipients, myocardial rejection peaked at 4 wk, (grade 2. 1+/-0.3 out of 4, mean+/-SEM, n = 9), and by 8-12 wk evolved coronary arteriopathy. At 12 wk, the GAD score was 1.4+/-0.3, and the parenchymal rejection grade was 1.2+/-0.3 (n = 8). In GKO recipients of bm12 allografts, myocardial rejection persisted at 12 wk (grade 2.5+/-0.3, n = 6), but no GAD developed (score: 0.0+/-0.0, n = 6, P < 0.01 vs. wild-type). Mice treated with anti-IFN-gamma mAbs showed similar results. Isografts generally showed no arterial changes. In wild-type recipients, arterial and parenchymal cells showed increased MHC class II molecules, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 compared to normal or isografted hearts. The allografts in GKO recipients showed attenuated expression of these molecules (n = 6). Thus, development of GAD, but not parenchymal rejection, requires IFN-gamma. Reduced expression of MHC antigens and leukocyte adhesion molecules may contribute to the lack of coronary arteriopathy in hearts allografted into GKO mice.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials