Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul;11(8):683-94.
doi: 10.1096/fasebj.11.8.9240969.

Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system

Affiliations

Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system

T Eschenhagen et al. FASEB J. 1997 Jul.

Abstract

A method has been developed for culturing cardiac myocytes in a collagen matrix to produce a coherently contracting 3-dimensional model heart tissue that allows direct measurement of isometric contractile force. Embryonic chick cardiomyocytes were mixed with collagen solution and allowed to gel between two Velcro-coated glass tubes. During culture, the cardiomyocytes formed spontaneously beating cardiac myocyte-populated matrices (CMPMs) anchored at opposite ends to the Velcro-covered tubes through which they could be attached to a force measuring system. Immunohistochemistry and electron microscopy revealed a highly organized tissue-like structure of alpha-actin and alpha-tropomyosin-positive cardiac myocytes exhibiting typical cross-striation, sarcomeric myofilaments, intercalated discs, desmosomes, and tight junctions. Force measurements of paced or unpaced CMPMs were performed in organ baths after 6-11 days of cultivation and were stable for up to 24 h. Force increased with frequency between 0.8 and 2.0 Hz (positive "staircase"), increasing rest length (Starling mechanism), and increasing extracellular calcium. The utility of this system as a test bed for genetic manipulation was demonstrated by infecting the CMPMs with a recombinant beta-galactosidase-carrying adenovirus. Transduction efficiency increased from about 5% (MOI 0.1) to about 50% (MOI 100). CMPMs display more physiological characteristics of intact heart tissue than monolayer cultures. This approach, simpler and faster than generation of transgenic animals, should allow functional consequences of genetic or pharmacological manipulation of cardiomyocytes in vitro to be studied under highly controlled conditions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources