Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:26:47-82.
doi: 10.1146/annurev.biophys.26.1.47.

Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena

Affiliations
Review

Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena

E Ríos et al. Annu Rev Biophys Biomol Struct. 1997.

Abstract

Researchers have made good progress in unraveling the molecular mechanisms of excitation-contraction (EC) coupling in striated muscle. Despite this progress, paradoxes abound. In skeletal muscle, the existence of a mechanical coupling between membrane charge movement and activation of sarcoplasmic reticulum (SR) release channels is essentially established, but the contribution of Ca(2+)-induced Ca2+ release (CICR) to the transient and steady-state components of Ca2+ release remains controversial. In cardiac muscle, the role of CICR as the primary mechanism of EC coupling is well established, but the stability and tight coupling between membrane Ca2+ current and release are paradoxical. Answers may lie in microdomain issues, and the examination of discrete elementary release events, although quantitative treatments are needed. This review explores the theoretical and experimental methods used and the observations made in the study of microdomain Ca2+.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources