A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes
- PMID: 9242695
- DOI: 10.1074/jbc.272.32.20185
A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes
Abstract
Ceruloplasmin is a copper-binding protein, which is the major ferroxidase in plasma of hepatic origin. We now provide evidence for a novel membrane-bound form of ceruloplasmin expressed by astrocytes in the mammalian central nervous system. Using a monoclonal antibody (1A1), we show that the cell surface antigen recognized by this antibody is ceruloplasmin and that it is directly anchored to the cell surface via a glycosylphosphatidylinositol (GPI) anchor. Our peptide mapping and other immunochemical studies indicate that, except for the GPI anchor, the membrane-bound and secreted plasma forms are similar. We also show that the membrane-bound form of ceruloplasmin has oxidase activity. These studies therefore suggest that the GPI-anchored form of ceruloplasmin may play a role similar to the secreted form in oxidizing ferrous iron. The GPI-anchored form of ceruloplasmin expressed by astrocytes is likely to be the major form of this molecule in the central nervous system because serum ceruloplasmin does not cross the blood-brain barrier. Lack of this form of ceruloplasmin in the central nervous system could lead to the generation of highly toxic free radicals, which can cause neuronal degeneration as seen in aceruloplasminemia and other neurodegenerative diseases such as Parkinson's and Alzheimer's disease.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
