Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:66:269-313.
doi: 10.1146/annurev.biochem.66.1.269.

Structure-based perspectives on B12-dependent enzymes

Affiliations
Review

Structure-based perspectives on B12-dependent enzymes

M L Ludwig et al. Annu Rev Biochem. 1997.

Abstract

Two X-ray structures of cobalamin (B12) bound to proteins have now been determined. These structures reveal that the B12 cofactor undergoes a major conformational change on binding to the apoenzymes of methionine synthase and methylmalonyl-coenzyme A mutase: The dimethylbenzimidazole ligand to the cobalt is displaced by a histidine residue from the protein. Two methyltransferases from archaebacteria that catalyze methylation of mercaptoethanesulfonate (coenzyme M) during methanogenesis have also been shown to contain histidine-ligated cobamides. In corrinoid iron-sulfur methyltransferases from acetogenic and methanogenic organisms, benzimidazole is dissociated from cobalt, but without replacement by histidine. Thus, dimethylbenzimidazole displacement appears to be an emerging theme in cobamide-containing methyltransferases. In methionine synthase, the best studied of the methyltransferases, the histidine ligand appears to be required for competent methyl transfer between methyl-tetrahydrofolate and homocysteine but dissociates for reductive reactivation of the inactive oxidized enzyme. Replacement of dimethylbenzimidazole by histidine may allow switching between the catalytic and activation cycles. The best-characterized B12-dependent mutases that catalyze carbon skeleton rearrangement, for which methylmalonyl-coenzyme A mutase is the prototype, also bind cobalamin cofactors with histidine as the cobalt ligand, although other cobalamin-dependent mutases do not appear to utilize histidine ligation. It is intriguing to find that mutases, which catalyze homolytic rather than heterolytic cleavage of the carbon-cobalt bond, can use this structural motif. In methylmalonylCoA mutase a significant feature, which may be important in facilitating homolytic cleavage, is the long cobalt-nitrogen bond linking histidine to the co-factor. The intermediate radical species generated in catalysis are sequestered in the relatively hydrophilic core of an alpha/beta barrel domain of the mutase.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources