Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Jul;273(1 Pt 2):F9-17.
doi: 10.1152/ajprenal.1997.273.1.F9.

Induction of molecular chaperones by hyperosmotic stress in mouse inner medullary collecting duct cells

Affiliations
Comparative Study

Induction of molecular chaperones by hyperosmotic stress in mouse inner medullary collecting duct cells

M I Rauchman et al. Am J Physiol. 1997 Jul.

Abstract

The extreme hyperosmotic conditions that exist in the renal inner medulla enable the urinary concentrating mechanism to function. In this study, we evaluated whether stress-related molecular chaperones are induced in response to hyperosmotic stress in mouse inner medullary collecting duct (mIMCD3) cells. Exposure of cells to medium supplemented with 100 mM NaCl for 4 or 24 h resulted in an increase in heat shock protein-72 (HSP-72) (inducible form) by Western blot. Immunocytochemistry confirmed the increase of HSP-72 and showed that hyperosmotic stress resulted in a localization of HSP-72 predominantly to the nucleoplasm that surrounds the nucleoli and to the cytoplasm, a subcellular distribution pattern different from that seen with heat shock. Using a denatured protein (casein)-affinity column with ATP elution, we identified a number of putative molecular chaperones (46, 60, 78, and 200 kDa) that are upregulated in response to 4 h of hyperosmotic NaCl treatment. Microsequencing identified one of these proteins to be the mitochondrial chaperone mtHSP-70, a member of HSP-70 family, and another to be similar to beta-actin. We also found high levels of HSP-72 in cells chronically adapted to hypertonicity, indicating that chaperones are still required to maintain certain cellular functions even after nonperturbing organic osmolytes are known to accumulate. These results suggest an important role for molecular chaperones in the adaptation of renal medullary epithelial cells to the hyperosmotic conditions that exist in the inner medulla in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources