Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep;22(9):1165-71.
doi: 10.1023/a:1027377605054.

Glutathione is an endogenous ligand of rat brain N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors

Affiliations

Glutathione is an endogenous ligand of rat brain N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors

V Varga et al. Neurochem Res. 1997 Sep.

Abstract

A study was made of the effects of reduced (GSH) and oxidized (GSSG) glutathione on the Na(+)-independent and N-methyl-D-aspartate (NMDA) displaceable bindings of glutamate, on the binding of kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ligand of the brain NMDA receptor-ionophore complex: glycine, dizocilpine (MK-801) and (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP). GSH and GSSG strongly inhibited the binding of glutamate, CPP and AMPA, kainate and glycine binding being less affected. Both peptides enhanced the binding of dizocilpine in a time- and concentration-dependent manner. This activatory effect was not additive to that of saturating concentrations of glutamate or glutamate plus glycine. The activation of dizocilpine binding by GSH and GSSG was prevented by the competitive NMDA and glycine antagonists DL-2-amino-5-phosphonovalerate and 7-chlorokynurenate. GSH and GSSG may be endogenous ligands of AMPA and NMDA receptors, binding preferably to the glutamate recognition site via their gamma-glutamyl moieties. In addition to this, at millimolar concentrations they may regulate the redox state of the NMDA receptor-ionophore complex.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Pharmacol. 1989 Dec;36(6):912-6 - PubMed
    1. Biochem Pharmacol. 1989 May 1;38(9):1499-505 - PubMed
    1. Int Rev Neurobiol. 1976;19:75-121 - PubMed
    1. Physiol Rev. 1990 Apr;70(2):513-65 - PubMed
    1. Int J Neurosci. 1987 Feb;32(3-4):881-9 - PubMed

Publication types

LinkOut - more resources