Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep 5;36(3):360-80.
doi: 10.1002/(sici)1097-4636(19970905)36:3<360::aid-jbm11>3.0.co;2-i.

Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides

Affiliations

Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides

P Mainil-Varlet et al. J Biomed Mater Res. .

Abstract

The in vivo and in vitro degradation of low-molecular-weight poly(L-lactide), poly(L/D-lactide), and poly (L/DL-lactide) rods was investigated. The low-molecular-weight fast-degrading materials were used to accelerate the degradation process and make the test conditions more critical. In the in vivo study the rods were implanted in the soft tissue of sheep and explanted at 1, 3, 6, and 12 months. In the in vitro experiments the samples were subjected to aging at 37 degrees C in the phosphate buffer using two different modes. In the so-called pseudodynamic mode the aging buffer was regularly replaced if the pH dropped more than 0.5. In the static mode the buffer was not changed over the whole testing period of 52 weeks. The mechanical, molecular, and crystalline properties of the rods were measured and their appearance in the course of aging was evaluated using scanning electron microscopy. It was found that the changes in the mechanical properties of poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide) samples subjected to in vitro degradation tests in both the static and pseudodynamic modes are in good approximation with data obtained from the in vivo study. The pH of the buffer solution had no evident effect on the mechanical properties or the rate of degradation as estimated from the drop in molecular weight of the aged samples. The replacement of the aging buffer to maintain a constant pH at 7.4 does not seem to be critical for the degradation of the polylactides. In vitro degradation tests can be used as a relevant procedure for predicting the in vivo functionality of implants from the polylactides used if the criteria for assessing such a functionality are the changes in mechanical properties and molecular weight.

PubMed Disclaimer

MeSH terms

LinkOut - more resources